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FOREWORD 

The effort described in this report was performed by Syracuse Uni- 

versity Research Corporation  (SURC)  under Contract DAHC60-73-C-G044 sponsored 

by the U.S.  Army Ballistic Missile Defense Advanced Technology Center.     This 

final report covers the period from 29 January 1974 through 28 February  1976. 

This report is identified by the contractor as SURC TR 75-249.    Vol- 

ume 6  is submitted as part of the final report,  entitled ECM/ECCM Evaluation 

Program,  which comprises the following eleven volumes: 
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Terminal Defense Systems 
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ABSTRACT 

: • 

I 
T i   ■ 

M 

This report is concerned with the problem of protecting a large phased 

array radar from the effects of electronic countermeasures (ECM). The context 

of the problem is the defense of strategically important targets from ballistic 

missile attack, the radar being one of the key sensors in the defense system. 

A continuation of previously reported work, this study investigated 

the feasibility of using a partially adaptive array to emulate, as nearly as pos- 

sible, the performance of the fully adaptive array. A partially adaptive array 

would be less expensive to fabricate and less complex and. therefore, would be 

capable of more rapid response. 

This study was divided into three parts. First, since the partially 

adaptive array can be implemented in many different configurations, several of 

the more promising of these configurations were investigated.  Second, the funda- 

mental question of transient response was addressed. The findings of this por- 

tion of the study apply to any adaptive processor. A potential solution to the 

transient response problem was postulated and evaluated. Since this solution, 

which primarily addressed problems arising during the radar search function, had 

a potential effect on the performance of the radar during the track function, a 

third and much shorter study was launched into the question of tracking perfor- 

mance of the array. 

The results of these studies have shown that there are several partial- 

ly adaptive array configurations which show promise of providing the protection 

needed against sidelobe jamming. Further, response time of these arrays can be 

controlled to within acceptable limits. There does not. however, appear to be a 

simple solution to the requirement for precision in the fabrication of the par- 

tially adaptive array. Array errors would seem to pose a fundamental limitation 

to this approach. 
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SECTION  1 

INTRODUCTION 

I 

This report is concerned with the problem of protecting a large phased 

array radar from the effects of electronic countermeasures (ECM).  The context 

of the problem is the defense of strategically important targets from ballistic 

missile attack, the radar being one of the key sensors in the defense system. 

As time has passed, the techniques for negating the effects of jamming 

have evolved from relatively elementary sidelobe cancellation systems to the 

concept of a fully adaptive array, keeping astride the ever-increasing postulat- 

ed threat.  As the fully adaptive array concept began to emerge, it soon became 

obvious that making a large phased array fully adaptive would be expensive as 

well as potentially too slow to respond to rapidly changing input conditions. 

This study, a continuation of previously reported work  , investigat- 

ed the feasibility of using a partially adaptive array to emulate, as nearly as 

possible, the performance of the fully adaptive array.  A partially adaptive 

array would be less expensive to fabricate and less complex and. therefore, 

would be capable of more rapid response. 

This study was divided into three parts. First, since the partially 

adaptive array can be implemented in many different configurations, several of 

the more promising of these configurations were investigated.  Second, the funda- 

mental question of transient response was addressed.  The findings of this por- 

tion of the study apply to any adaptive processor.  A potential solution to the 

transient response problem was postulated and evaluated.  Since this solution,.- 

which primarily addressed problems arising during the radar search function, had 

a potential effect on the performance of the radar during the track function, a 

third and much shorter study was launched into the question of tra;king perfor- 

mance of the array. 

Section 2 of this report presents a summary of the results and conclu- 

sions which evolved from this study.  Sections 3 and 4 present the partially 

1-1 
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SECTION 2 

RESULTS AND CONCLUSIONS 

2.1 RESULTS 

During this investigation, several partially adaptive configurations 

applicable to planar arrays were analyzed.  Each was evaluated on its ability 

to counteract sidelobe jamming. 

The first configuration checked was the so-called simple subarray. 

This consisted merely of groupings of contiguous elements summed to form the in- 

put to the adaptive processor. Whenever such subarrays are formed, nonuniform 

weighting at the subarray level produces echelon lobes at regular intervals in 

the sidelobe region.  To prevent this from happening, it it necessary to ensure 

that the combined effects of the element pattern and the subarray pattern pro- 

duce little or no gain in these directions.  This usually means fixed, nonuni- 

form tapering on each subarray. 

Another technique particularly suited to series-fed arrays is the row 

(or column) subarray.  Here, the row is preweighted to yield low sidelobes in 

one dimension.  By adaptlvely weighting the row outputs, the sidelobes in the 

other dimension can be controlled. The disadvantage of this technique is that 

the taper loss and beam broadening caused by the open-loop weighting of the rows 

aluo penalizes the peacetime (non-ECM) performance. 

A technique which alleviates this problem at the expense of additional 

beam forming hardware is the so-called row-column subarray configuration. Each 

element is divided into two paths. One path is used to form preweighted row 

subarrays with adaptively weighted outputs.  The other path is used to form col- 

umn subarrays which are weighted adaptively also. All row and column outputs 

are then summed to form the beam. The advantages of this technique over the pre- 

vious one are that:  (1) adaptive control is maintained in both dimensions (azi- 

muth and elevation), and (2) less severe tapering on each row and column is 

2-1 
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needed, yielding better ^acetime performance.  The reason for the latter is that 

only -30 dB tapering is required for -60 dB sidelobes in the regions off the 

principal axes, since the resulting pattern is the product of the two weighting 

functions.  For the row-only configuration, -60 dB weighting is required to ob- 

tain -60 dB sidelobes. 

All configurations were simulated on a digital computer and were found 

to perform in a satisfactory fashion, provided that array errors were main'ained 

at a negligible level.  Once array error levels were allowed to increase to 

levels consistent with current state-of-the-art, performance was limited to «ide- 

lobe levels consistent with the theory associated with random array errors in 

the non-adaptive array.  More precisely, the fully adaptive array, which is in- 

sensitive to this class of error, is also insensitive to the specific number of 

jammers in its sidelobes.  The partially adaptive array with high error levels 

becomes sensitive to jammer number in a fashion not unlike the ordinary multiple 

sidelobe canceller. 

The bounds on the transient response of an adaptive processor are im- 

posed partly by the statistical properties of the input signals and partly by 

the adaptive algorithm employed and the way in which it is implemented. In Sec- 

tion 5, two major classes of adaptive algorithms are presented, and their rela- 

tive merits are discussed as they relate to the transient response problem. 

The theoretically optimum solution to the adaptive array problem pro- 

duces a set of array weights which is a function only of the desired signal vec- 

tor and the noise covariance matrix. The first algorithm discussed is called 

the direct matrix algorithm.  The true covariance matrix, from which the ideal 

weights are computed, involves an infinite time average of the input process. 

The direct matrix algorithm uses a sample covariance matrix which is an average 

over a finite number of (independent) samples of the input process. It is shown 

that, for an N-channel system, only about 2N samples are needed to approach 

within 3 dB of the theoretical optimum performance. 

2-2 
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Unfortunately, the computations required to implement this algorithm 

make it difficult to use in a high-speed real-time environment. A special-pur- 

pose vector arithmetic unit is needed. 

The steepest descent (or control loop) algorithm, on the other hand, 

is easily implemented for high-speed applications in either digital or analog 

form.  This algorithm, based upon a well-known iterative minimization technique, 

employs a closed feedback loop and is, therefore, self-correcting in terms of 

processing errors.  The disadvantage of this algorithm is that the convergence 

time (the time it takes the processor to reach an acceptable solution) is diffi- 

cult to predict a priori and is, in general, subject to a wider variation than 

the direct matrix algorithm. 

A numerical example worked out in Section 5 shows that a 100-channel 

system, operating at a signal bandwidth of 10 MHz and using special-purpose vec- 

tor multiplier hardware, takes about 6 ms to find a solution using the direct 

matrix algorithm.  This solution yields an SNR which is within 3 dB of the the- 

oretical optimum. The steepest descent processor would take between 1 and 

100 Ms to settle to approximately 20 dB of noise cancellation. 

There are two observations which can be made concerning this example. 

The time taken by the direct matrix algorithm is predominately due to computa- 

tions required and not to accumulating sufficient samples of the input. At this 

bandwidth, the 100-channel processor would require only about 20 us to accumu- 

late sufficient samples. The steepest descent processor, on the other hand, per- 

forms the simple computations it needs during each intersample period.  Its con- 

vergence time is strictly limited by the number of independent samples required 

and the rate at which those samples are available. Second, the comparison be- 

tween the two algorithms is not exactly equivalent since the method of analysis 

and the criterion used in each case is different. More theoretical analysis 

(Appendix H) is needed before the two algorithms can be compared on a more 

equivalent basis. 

Timing in this example is based upon a single-pole filter.  Higher order fil- 
ters will shorten this response by up to 4:1. 

2-3 
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Nevertheless, it is clear that, for large-dimension, high-speed, real- 

time applications, the steepest descent (or loop-type) processor is capable of 

reaching a solution starting with zero initial conditions faster than the direct 

matrix algorithm. 

In Section 6, attention is given to the specific problem of the tran- 

sient response of the large aperture partially adaptive array. For the ballistic 

missile defense radar, a serious threat is posed by the precursor jammer. A 

typical threat consists of several hundred parachuteborne jammers slowly descend- 

ing on the area defended by the radar. 

Ordinarily, the adaptive array would be expected to settle down quick- 

ly each time the beam ie switched to a new position. A scheme was evaluated 

wherein weights for each beam position were stored in a memory and recalled as 

needed. They were updated each time the beam was switched to that position. The 

critical question concerning the feasibility of this approach is the relative 

stationarity of the jammer noise field compared with the processor update inter- 

val (that is. how often each beam position is visited). The results of a simu- 

lation detailed in Section 6 show that, for typical parachute descent rates and 

1 to 3 s frame times, the system performs nicely. Using the relatively long- 

term stationarity of the jammer field allows one to use either algorithm. 

The technique outlined in the previous paragraph results in the search 

volume being divided into discrete beam positions. This is acceptable for the 

search function. However, normal tracking procedure, which results in the track 

beam always being centered on the object being tracked, would require many more 

overlapping beam positions than are stored. The effects upon tracking perfor- 

mance of making use of the available discrete beam positions and the use of "off- 

null" tracking were investigated. An existing tracking simulation program was 

used to evaluate these effects as a function of the target signal-to-noise ratio 

(SNR). very little effect was noticed at low and high SNRs. Noticeable degra- 

dation did occur for moderate signal strength, however. It was concluded that 

this degradation could be avoided by suitably altering the tracking algorithm, 

particularly in the track initiation phase. 

2-4 

~ -■ -■ -- - —  Miiiiliinin«—■■—-■"-■      -   -     - — 



mmmmmm im '•*   mi UlUIUPIMflJ^MW 
"mm .i>fc 

1: 

2.2  CONCLUSIONS 

In terms of protecting the sidelobes of an antenna from directional in- 

terference, there are three catagoriea one might use to catalog adaptive systems, 

the distinction being made according to complexity and performance.  First, there 

is the sidelobe canceller.  This could be thought of as a system which controls a 

very small percentage of the total degrees of freedom needed to completely speci- 

fy the far-field pattern of the array.  This system is designed to handle a few 

discrete sources of interference.  The performance is a function of the ratio of 

independent sources to adaptive degrees of freedom, as well as instantaneous band- 

width and other effects. 

At the other end of the spectrum is the fully adaptive aperture in which 

the number of adaptive degrees of freedom employed is sufficient to completely 

specify the far-field pattern.  The performance is essentially independent of the 

number of discrete sources since the entire sidelobe structure can be adjusted 

more or less at will. 

Finally, there is the partially adaptive array which may have a lever- 

age of from 10:1 to 50:1 in the ratio of total degrees of freedom to adaptive de- 

grees of freedom. This is a transitional case and the performance is transition- 

al as well. As the results have indicated, certain configurations are capable of 

performance approaching that of the fully adaptive array provided that error 

levels are sufficiently low.  For those cases in which errors are high, the 

partially adaptive array is limited by those errors for large numbers of Jammers 

and behaves like a sidelobe canceller for small numbers of sources.  In other 

words, unless the ratio of jammers to adaptive degrees of freedom is low, the 

partially adaptive system with high errors will not provide good cancellation. 

With the proliferated sidelobe jamming threat, a point is reached when 

a significant number of beam positions contain one or more jammers posing a main- 

lobe jammer threat. Both the partially and fully adaptive array will provide 

some measure of malnlobe protection, depending upon the types of constraints em- 

ployed. However, once the spatial density of jammers reaches a certain point, 
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there is no alternative but to increase the sire of the aperture.  The adaptive 

array will not increase resolution above that which a given size aperture is 

capable. 

The results of these studies have shown, therefore, that there are sev- 

eral partially adaptive array configurations which show promise of providing the 

protection needed against sidelobe jamming.  Further, response time of these 

arrays can be controlled to within acceptable limits.  There does not, however, 

appear to be a simple solution to the requirement for precision in the fabrica- 

tion of the partially adaptive array.  Array errors would seem to pose a funda- 

mental limitation to this approach. 

,1 

.: 
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SECTION 3 

ARRAY CONFIGURATION STUDIES 

In considering the various candidate subarray configurations, the 

first that comes to mind is the grouping of physically contiguous elements to 

form what shall be termed "simple subarrays." The usual technique for analyzing 

this configuration is to factor the radiation pattern function into an array fac- 

tor and a subarray factor.  Using this concept, it can be seen that the adaptive 

processor is controlling the array factor and the "elements" of this array are, 

in fact, the subarrays.  The immediate problem with this configuration is that 

the phase centers of the subarrays are usually separated by several wavelengths, 

with the result that the array factor repeats several times in visible space. 

The echelon lobes thus generated, while modified by the subarray pattern to a 

certain degree, cannot be altered further by the adaptive processor because the 

folding-over process has caused the echelon lobes to become indistinguishable 

from the main beam as far as the array factor Is concerned. A scheme was in- 
(2) 

vestigated   for providing additional open loop suppression of echelon lobes 

by placing multiple nulls of the subarray pattern in the directions of the eche- 

lon lobes. However, in order to obtain enough control of the subarray pattern 

to accomplish this, overlapping subarrays were used.  This approach is feasible 

subject to the error limitations discussed in Section 4. Unfortunately, the 

beamforming network for this approach is complicated and somewhat inefficient. 

One of the more attractive configurations studied is the "beam-space" 

subarray.  The term subarray tends to be misleading in this case because the 

full aperture is used for each subarray.  It could also be called a multlbeam 

processor.  In its simplest form, the beam-space configuration consists of a 

linear array of n elements (where n is preferably an integer power of 2) con- 
(3) 

nected to a Butler   matrix beamformer. This beamformer normally provides n 

beams simultaneously at the output side, but this configuration uses only the 

beam in the desired scan direction and several others immediately around it. 

Figure 4-l(d) shows an example of the performance of a 32-element, 8-channel 

beam space array. 
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One of the most straightforward applications of the beam-space concept 

to planar arrays id I' the space-fed array.  In this type of array, a cluster of 

feed horns in the focal plane of the array lens provides a cluster of beams in 

two dimensions similar to the previous example for the linear array.  Each horn 

would be connected to one channel of the processor.  Various other schemes have 

been proposed in the past for forming multiple simultaneous beams, and any of 

these could also be used in this way.  Results of previous simulations   show 

the beam-space configuration to have better transient response behavior than 

other configurations studied, when used in conjunction with a loop-type proces- 

sor.  The beam-space adaptive array is, of course, subject to the same limita- 

tions due to array errors as the other subarray techniques. 

The existence of planar array designs employing slotted waveguide or 

other series-feed configurations involving rows of elements suggested the adap- 

tive combining of row (or column) subarrays.  It was realized at the outset that 

this would yield adaptlvity in only one principal plane of the far-field pattern, 

however. Control along the other principal plane must be accomplished in an 

open-loop fashion by putting the proper fixed amplitude taper on the elements in 

each row.  Unfortunately, this usually requires rather heavy fixed tapering to 

anticipate worst-case jamming conditions.  This affects the efficiency of the 

array under peacetime conditions.  Nevertheless, Figure 3-1(a) depicts the quie- 

scent pattern of a 100-element array arranged in a square planar array 10 ele- 

ments on a side.  Each 10-element row is weighted for 40 dB Dolph-Tchebychev 

sidelobes.  The response in the other principal plane corresponds to a uniformly 

weighted steering vector.  Figure 3-l(b) shows the response to a concentrically 

placed ring of interference sources adjusted to cut through the principal planes 

midway through the sidelobe region. Note that the response is only in the one 

principal plane, as expected. 

The need for heavy open-loop weighting and lack of control in one prin- 

cipal plane in the row-only configuration led to the next configuration, termed 
(4) 

the row-column precision adaptive array (RCPAA).    Figure 3-2 illustrates how 

this system is implemented. Each element signal is split into two paths. One 

path goes to a row summer as in the row-only array described previously. The 

i 
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Figure 3-1.    Row Subarrays 
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rows are combined adaptively.  The other half of the element power is fed to a 

column summer.  The column outputs are then combined adaptively at the same 

point as the row outputs.  The number of adaptive degrees of freedom, is, there- 

fore, equal to the number of rows plus the number of columns in the array. 

Figure 3-3(a) illustrates the quiescent pattern for this configuration 

using the same 100-element geometry as the previous example.  Each row or column 

is weighted with 23 dB Dolph-Tchebychev coefficients.  Note the product effect 

on the off-axis sidelobes.  The use of less severe weighting means that the 

peace-time efficiency of the array is relatively high.  In the presence of jam- 

ming, the response along a principal plane will be the sum of a fixed pattern 

due to the fixed weighting in one direction and an adaptive pattern due to the 

adaptive weighting in the orthogonal direction.  This configuration can be 

thought of as a form of beam-space processor where each beam is formed by a row 

or column. Primary control is exercised in the principal plane sidelobe areas. 

I«) QUIESCENT PATTERN (bl ADAPTED PATTERN 

Figure 3-3.    Row-Column Array 
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Because of the product effect, off-axis sidelobes are much lower initially and do 

not need the same degree of protection. Figure 3-3(b) illustrates the response 

of this array to the same concentric ring of interference sources as employed in 

the previous example.  Note the response along each principal plane.  Incidential- 

ly. Isotropie element patterns were employed throughout, which accounts for the 

large sidelobes near endfire. 

! 

;ii 

■ 

0 

The advantages of  this configuration have been outlined.    The primary 

disadvantage of  this configuration is a practical one of  implementation.     A 

straightforward corporate feed structure which not only provides the redundant 

row and column sums needed for the sum pattern but also provides two-axis mono- 

pulse difference beams as well could be cumbersome.    Again,   space feed techni- 

ques could prove to be more practical from a hardware standpoint. 
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SECTION 4 

ARRAY ERROR LIMITATION STUDIES 

Under ideal conditions, most subarray configurations studied were cap- 

able of yielding performance nearly equal to that of fully adaptive arrays, but 

with a fraction of the adaptive degrees of freedom of the fully adaptive array. 

This is made possible by the fact that the subarray transformation "folds" real 

element n-space into a subarray m-space by taking advantage of symmetries in 

the configuration.  Thus, m degrees of freedom at the subarray level appear to 

have the same effect as n degrees of freedom at the element level through the 

leverage of the subarray beamformer. 

However, the introduction of random independent errors at the element 

level destroys the needed symmetry. The adapted radiation pattern of an array 

with such errors can be thought of as consisting of a deterministic component 

controlled by the adaptive processor and a random component determined by the 

level of errors in the array. Under severe interference conditions, the deter- 

ministic component of the sidelobe pattern is lowered to the degree necessary 

to otherwise cancel the effects of the interferers. However, since the total 

response of the array is the sum of the random and deterministic components, 

the random sidelobe structure ultimately dominates. 

Figure 4-1 illustrates this effect for a 32-element linear array. Fig- 

ure 4-l(a) depicts the quiescent (no jamming) pattern for the array assuming ele- 

ment-level errors equivalent to -15 dBi (15 dB below Isotropie).  In Figure 

4-l(b), the response to a severe jamming attack with sources spread throughout 

most of the sidelobe region is shown for the fully adaptive case with the same 

level of errors as in Figure 4-l(a). In Figure 4-l(c). the 32 elements are com- 

bined into an 8-channel beam-space+ processor with the same -15 dBi error level. 

Note that while the fully adaptive array is perfectly capable of coping with this 

class of error, the partially adaptive array lacks the necessary degrees of 

See previous description of beam-space configuration. 
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Figure 4-1.    32-Element Array 
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freedom to do so.  If the errors are low enough, the beam-space processor works 

well, as in Figure 4-l(d) with -55 dBi errors. 

To illustrate the effect of array errors on planar arrays, a 36-ele- 

ment array was configured in a square 6 elements on a side.  The plot of Fig- 

ure 4-2 (a) shows the response of the fully adaptive processor to a set of con- 

centric rings of interference with no array errors. For perspective, the floor 

of the plot is -60 dBi and the peak of the beam is +15 dBi. Figure 4-2(b) Is 

the same fully adaptive case but with element errors equivalent to -20 dBi side- 

lobes. As expected, the fully adaptive array compensates for these errors. 

In Figure 4-2(c), the 36-element array is configured as a row-column 

processor with 12 degrees of freedom.  The same interference field is employed 

and errors are assumed negligible. Figure 4-2(d) is the same case but with 

-20 dBi errors. Because the interference field cuts the principal plane in only 

one region, the processor is able to cope with it. Note, however, that the off- 

axis sidelobe level is essentially that of the random component of the pattern. 

Therefore, this configuration needs low element-level errors to work well in a 

heavy jamming environment. 

Other subarraying configurations might be considered, particularly if 

special circumstances exist, such as special hardware configurations or limited 

threat corridors. There are two characteristics which seem to be common to all 

of these approaches. One, of course, is the need for precision in the subarray 

beamforming in order to preserve as much of the symmetry as possible in the 

transformation. The other is the tendency of the subarraying process to create 

zones in space which can be adaptively controlled and those which have to be con- 

trolled by open loop means.  In some configurations, such as row subarrays, this 

effect is very obvious.  In others, such as the linear beam-space array, it is 

not as obvious. One of the most important considerations in choosing a config- 

uration, therefore, is the need to minimize the effects of array tolerances on 

the region of the response which must be controlled in an open loop manner. 

The effects of element-level errors on partially and fully adaptive 

arrays were summed up in a series of simulations summarized in Figure 4-3. A 
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(b)  FULLY ADAPTIVE WITH -20 dBi ERRORS 

Id) RCPAAWITH-20dBi ERRORS 

Figure 4-2.    Effects of Errors on Planar Adaptive Arrays 
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32-element linear array of half-wave-spaced Isotropie elements was assumed. 

The frequency was 1300 MHz and the signal bandwidth was assumed to be 5 MHz. 

The jammer-to-noise ratio (JNR) in all cases was 60 dB in an element. The abs- 

cissa of the plots is the average sidelobe level due to assumed element-level 

errors.  The ordinate is an improvement factor defined as the ratio of the sig- 

nal-to-jammer-plus-noise ratio at the output of the array referenced to that 

same ratio in an element. Thus, this measure takes into account any loss in 

array gain due to errors as well as degradations in jammer cancellation. Fig- 

ure 4-3(a) is a plot for seven discrete sources of jamming, and Figure 4-3(b) 

shows the results for 80 jammers covering most of the sidelobe region.  Four 

adaptive configurations are compared.  The reference case is a fully adaptive 

(32 adaptive degrees of freedom) configuration.  The second case is the so-called 

simple subarray using eight degrees of freedom corresponding to eight A-element 

subarrays. The third case is an 8-channel, beam-space configuration equivalent 

to the case described previously. Finally, the fourth case is a multiple side- 

lobe cancellation (MSI/1) configuration where eight randomly chosen elements are 

designated an auxiliary elements. The dotted line shows the non-adaptive perfor- 

mance one would realize if the composite sidelobe level were that due to random 

errors only. 

Note that, in Figure 4-3(a), the number of jamming sources is one less 

than the number of adaptive degrees of freedom. All configurations perform rea- 

sonably well.  In Figure 4-3(b), complete control of the far-field pattern is 

needed to achieve ueable performance.  The fully adaptive configuration has the 

capability to do this and is relatively unaffected. The simple subarray is 

limited by the presence of echelon lobes which cannot be controlled by the adap- 

tive array factor. The MSLC simply does not have the control needed. The beam- 

space configuration, through the folding-over process, is able to emulate fully 

adaptive performance only to the extent that the precision of the array allows. 

Note how closely it tracks the dotted line. It was noted in other simulations 

not shown here that the simple subarray configuration would exhibit this same be- 

havior if one avoided placing jammers in the echelon lobe regions. This series 

of simulations Illustrates the fact that partially adaptive arrays cannot 
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arbitrarily control the random error component of the sidelobe structure, an impor- 

important limitation. 

• FULLY  ADAPTiVt 
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Figure 4-3. Performance Limitation due to Element-Level Errors on 
Partially and Fully Adaptive Arrays 
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SECTION 5 

REVIEW OF MAJOR ADAPTIVE ALGORITHMS 

The purpose of this section is to review two major classes of adaptive 

array algorithms with the purpose of quantifying the response time of each. Ac- 

cordingly, this section begins with a short review of the theoretically optimum 

solution, introducing the notation to be used.  There then follows a discussion 

of the direct matrix solution algorithm and, finally, a discussion of the steep- 

est descent algorithm. 

5.1 OPTIMUM SOLUTION 

Figure 5-1 illustrates a canonical form of the adaptive array. The 

voltage, v., in the i'th element la weighted or multiplied by w^^ and summed with 

the other weighted voltages to form the output. If V is the column vector con- 

taining all the v's, then the true covarlance matrix is given by 

M = EOfV) (5-1) 

where the expectation is taken over (infinite) time. The asterisk denotes con- 

jugation, and the t denotes matrix transpose. From considerations of maximum 

SNR  i the optimum set of weights is given by 

W 
opt 

-1 * 
aM S (5-2) 

where S is a vector of the voltages induced in each element by the desired sig- 

nal and a convenient value for the coefficient, a, is 

a - (sWr1 

5.2 DIRECT MATRIX SOLUTION AND IMPLEMENTATION 

(5-3) 

I   ' 

The closed form of the solution (Equation 5-2) for the optimum weights 

suggests the direct substitution of a best estimate of the matrix M; that is. 

W -1 * 
aM S 

5-1 

(5-4) 
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where 

""   1  ^   * f- 
M = K J, Vk Vk k=l 

(5-5) 

is an average over K samples of the Input vector, V .  For an N-element array, 

Reed   shows that the expected degradation from optimum SNR for finite K Is 

given by 

loss - -10 log10 
K ^ " N (dB), K > N (5-6) 

t 
or that approximately 2N samples will yield within 3 dB of the optimum SNR . 

The direct matrix solution Is, of course, an arithmetic solution and, 

as such. Is Implemented In digital hardware. The Input voltages must be digi- 

tally encoded. The accuracy to which the encoding Is carried depends upon the 

expected dynamic range of the signals. The encoding Introduces quantization 

noise which must be treated just like any other source of noise In computing ex- 

pected SNRs. The dynamic range of an encoded signal Is given by the ratio of 

the power of a signal just short of saturation to quantization noise as 

I 
I 

(S/N) - 6n + 5  (dB) 

where n Is the number of bits In the encoded word. 

(5-7) 

Because the adaptive process Involves the subtraction of large numbers 

to form small but significant results (I.e., large jammer amplitude, small de- 

sired signal amplitude). It Is very Important to maintain the arithmetic accuracy 

of the calculations. The disadvantage of the direct solution Is that It does not 

Involve Iteration or feedback and cannot, therefore, sense and correct computa- 

tional errors. As a consequence, the arithmetic hardware employed In a real-time 

processor using the direct matrix algorithm must carry a large number of signi- 

ficant bits, a factor affecting both the cost and the speed of operation. 

From Equation 5-5, the obvious procedure to follow would be to first 

accumulate the summation V.V. to form the sample coverlance matrix. Next, the 

Appendix F briefly summarizes the derivation of Equation 5-6. 
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matrix would be Inverted using one of a number of standard matrix Inversion tech- 

niques.  In fact, this two-step process Is not necessary In this case because of 
A«l 

the special form of the matrix.  It Is possible to compute the Inverse, M , 

directly from the data.  Adding another sample of data to the sample covarlance 

matrix according to the formula In Equation 5-5 Is equivalent to 

"K- 
K 

;+i K + i "K 
1   * t ^  v„ V, 

K + 1 K K 
(5-8) 

Through the use of a matrix relationship (the derivation of which appears In 

Appendix E) one can alternately write 

hll  " a^K " <1 + bVK V V  * CMK VK VK V (5-9) 

K + 1  .   . ,„     K + 1 
where: a = —=— , b * 1/K, c = —r— 

To Implement this form of the algorithm, one begins with a first esti- 
~-l 

mate of M , which Is simply 

"-1 
M  " I 

where I Is the identity matrix of order N. 

(5-10) 

The form of averaging employed in Equations 5-5 and 5-8 is equivalent 

to the "integrate and dump" technique frequently used in digital processing. 

All samples in the data window of K samples receive equal weight in the average. 

It is also possible to Implement the "sliding window" type of averaging process 

wherein the most recent sample receives the heaviest weighting and the previous 

samples are exponentially weighted in the fashion of a recirculating delay line 

with a gain slightly less than unity. The analog equivalent would be an RC low- 

pass filter. This form is particularly suited to quasistationary noise since it 

will adapt to a slowly changing environment automatically, gradually "forgetting" 

old data. 
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For the "sliding window" form of the process, the recursion takes 

the form of 

* t 
"K+l = P\ + C1 - P)VKVK 

(5-11) 

It can easily be seen then that the (K - J)th sample will have been weighted by 

pJ where p is a number slightly less than unity. To apply the matrix relation- 

ship of Equation 5-9, one uses the alternate definitions of the sealer constants 

P ' b    P  ' C    p2 
(5-12) 

! f 

s 

5.3 TIME ESTIMATE 

In a nonreal-time application, a block of data would be processed by 

first forming the sample covariance matrix inverse, calculating the weights, 

and then using those weights to process the block of data.  In a real-time sys- 

tem, one might use the sliding window equations and, for each new sample, apply 

Equation 5-9 (with the constants from Equation 5-12) once, then compute the new 

weights using Equation 5-4, and finally use the new weights on that sample, 

finishing in time to repeat the whole process with the next sample. Unfortu- 

nately, this schedule is very demanding of the arithmetic hardware, and is some- 

what contradictory to the assumption which allows the formation of the sample 

covariance matrix in the first place; namely, that the noise field is at least 

quasistationary. In other words, the weights computed from one group of samples 

should hold for the next few samples with little or no degradation if parameters 

are changing very slowly. One could then take several sample intervals to per- 

form the computations needed for each recursion. 

It can be seen that the time required to obtain an estimate of the co- 

variance matrix must be short with respect to the rate of change of the noise 

statistics, a fundamental limitation.  If (see Equation 5-6) It takes about 2N 

samples to form a good estimate, and, from the constraint on computation time, 

it takes L sample periods to execute one recursion of Equation 5-9, then the 

minimum total computation time would be 

2NLt 

5-5 
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where t is one sample interval.  In practice, then, the noise field must change 

slowly with respect to T rather than to 2Nt8 in order for the real-time system 

to work properly and to keep up with the data input rate. 

In order to apply the foregoing analysis to a specific case, it is 

necessary to investigate the bounds on tha factor Lts.  This, in turn, entails 

an estimate of the number and type, of arithmetic operations required per re- 

cursion. 

In a conventional general-purpose computer, arithmetic operations are 

done serially.  Thus, when two complex numbers are multiplied and the result 

added to an accumulator, there are actually four scalar multiplication and four 

scalar addition operations performed.  Using those ground rules, the number of 

multiplication operations involved in one recursion cycle of Equation 5-9 is 

ION2 + 6N and the number of addition operations is 8N + 4N. A typical third- 

generation computer (Xerox Sigma V) will execute a floating point multiplica- 

tion in 10 ys and an addition in 5 us. At this rate, it would take 0.5 s per 

iteration for a 100-element system or a T of about 5 min. 

Obviously, a special-purpose machine is required. The predominant 

arithmetic operations involve N-element vectors with complex numbers for ele- 

ments. Three fundamental operations are involved in the recursive cycle, vector 

addition, a vector times a scalar, and a vector inner product. There are N vec- 

tor additions. N + 1 inner product operations and 2N + 1 vector/scalar multipli- 

cations. A vector arithmetic unit could be constructed which contains AN scalar 

multipliers configured to carry out any of the above vector operations in paral- 

lel. It is within the state-of-the-art in present-day digital integrated cir- 

cuits to carry out such an operation in 100 ns. For the 100-element processor 

used in the previous example, one cycle would take about 30 ys and would result 

in a T of about 6 ms (i.e.. 2N recursion cycles). 

It is significant to note for future reference that computation time, 

T, using a general purpose arithmetic unit is proportional to N , while it is 
2 

proportional to N for the vector arithmetic unit. 

I 
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5.4 STEEPEST DESCENT ALGORITHM AND IMPLEMENTATIONS 

The steepest descent or "control loop" algorithm la based upon the 

following development.  For input voltage vector, V(t), and weight vector, W, 

the output residue voltage is 

V (t) = W V(t) 

The expected value of the residue power can be shown to be 

P - \Pvi W 

(5-U) 

(5-15) 

where the ( )H denotes conjugate transpose.  This is a quadratic form and the 

N-dimensional surface described by this equation can be shown to be a concave 

hyperparaboloid. There is, therefore, only one minimum and no local minima. 

The steepest descent technique starts with an initial guess for W, computes the 

gradient at that point, and takes a small step in W along the direction of the 

negative gradient. The process is then iterated until there is no more improve- 

ment.  Since the function is well-behaved over all W, a solution is always gua- 

ranteed. 

That this method converges to the optimum can be easily shown by con- 

sidering a simplified version of the development which appears in Appendix D. 

Suppose we wish to minimize the residue power (Equation 5-15) subject to the 

constraint 

W^ (5-16) 

That is, the response to the desired signal is always unity. This is merely a 

scale factor constraint. Let us form the cost function to be minimized as 

F(W) = I vftl W + X (wV - 1) (5-17) 

where the factor i aud the conjugate version of Equation 5-16 have been substi- 

tuted for convenience. 

Taking the gradient of F(W) with respect to W, setting it to zero, and 

solving for W   yields 
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opt (5-18) 

Substituting the conjugate of Equation 5-18 into Equation 5-16 to solve for X 
yields,   finally. 

wopt= (sVVrW (5-19) 

This result is essentially identical to the result obtained by Applebaum(5) from 

considerations of maximum SNR. 

The steepest descent algorithm can be implemented with equal facility 

in either analog or digital form. The Howells(7) control loop for the sidelobe 

canceller and the WidrowW least mean square (LMS) algorithm are two early ex- 

amples of. respectively, the analog and the digital realizations. 

Considering first the digital form. Figure 5-2 shows a simple form of 

the control loop. Writing the equations for the loop, we have 

and 

t^ - S - xi 

xi+1 - xi + k vjvjwj 

Combining these equations, one obtains 

wi+i - 
wi - k vfe 

(5-20) 

(5-21) 

(5-22) 

The relevancy of this equation can be shown by taking the expected 

value of Wi+1 - v^ over time, yielding 

E(Wi+1 - W^ = -k MWi (5-23) 

That is, the expected value of the update to the vector W is proportional to the 

negative of the gradient of the residue function given by Equation 5-15.  Thus, 

this system uses the instantaneous value of the gradient based upon the present 

data sample as an estimate of the true gradient. Since this is a closed feedback 

loop system, any errors made in one iteration (i.e., a step in a slightly less 
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Figure 5-2. Simple Form of Digital Control Loop 

5-9 

■ ■> -^ <- —,*--■        - — "-->- ..... x^^m. {MHiat\t(\fim^mit"tiäi4htit:\mr i\mr»\ \uU^t      -   --"-^.n-,    -,  .. —... — -■. .^.^^..^  , ■,.^—.-. ^_*__ .. - ^.^ ^ ^ .^J^, -^., ,&,   >.^-«.^^-—*-t..gl 



•HK 
I.» in •^MJJWPUlulWKMil!W|WiMilk,.llll,«.ii>J!ii.,i,J,JLJJ4|^W|,]!, n^mmb'^wm^mm1'- 

I 

than optima, downhill direction) will be corrected in the next iteration, a fact 

which eases the arithmetic precision requirements considerably. 

With reference to Figure 5-3. the analog version of the control loop 

is only slightly different.  The control equation for the weights is 

(5-24) w(t) = s* - h(t) (*) k vVw(t) 

+The implication of this assumption is that the noise process remains stationary 
over the transient response time of the processor. 

5-10 

.: 

where h(t) is the impulse response of a filter (usually a single pole low pass 

filter) and (*) denotes convolution.  The filter, in essence, smooths the in- 

stantaneous estimate of the gradient similar to the action of the digital in- 

tegrator in the previous example. 

5.5 TRANSIENT RESPONSE ESTIMATE 

in the direct matrix solution, response time is limited by the time 

required to obtain a good estimate of the covariance matrix and by the arithme- 

tic unit used to compute the solution. For the steepest descent algorithm, the 

analysis of convergence time is more complicated. 

The computation load for the digital realisation of the loop is much 

lighter than for the direct matrix algorithm. There is basically one vector 

multiplication per iteration. As pointed out previously, the numerical accuracy 

requirement is relaxed, which also contributes to the speed of the multiplier. 

Analog circuits have been built and tested at instantaneous bandwidths of 150 MHz. 

The problem lies in estimating how many iterations are required, or. 

equivalently. predicting the time constants of the control loops. To gain some 

insight into the problem, consider Equation 5-24 with V V replaced by its ex- 

pected value. M.  It becomes 

W(t) - 8* - h(t) (*) k M W(t) <5-25) 

This equation suggests a vector servo loop of the form shown in Figure 5-4(a). 

Since M contains nonzero off-diagonal terms, in general, the N loops implied by 

0 
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Figure 5-3. Analog (Howells) Control Loop 
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the vector setvo loop ere etoee-coupUd.  Thle mltee enelyele eeieg oooveetionel 

operational calculua tectmlnuea difficult. 

It la alwaye poaelble. however, to treeetom the problem to decoupled 

or "normal" apace, thanke to the apeclal propertlea of the matrix M. Conalder 

a matrix A, with the following propertlea: 

A1^ A - K 
(5-26) 

„here M la the uaual covariance matrix and K la a diagonal matrix „hoae elements 

are.  in fact, the elgenvaluea of the matrix M.    «1th no loaa In generality wo 

„a, alao require, for convenience, that the matrix A be unitary.    That la. 

A»A • I (5-27> 

The columna of A are the elgenvectera correeponding to the elgenveluea in K. 

Consider the normal weights Z given by 

Z - A1^    or    W = A Z 

Substituting this relationship into Equation 5-25 and premultiplyiug by A 

yields 

Z - Y - h(t) (*) K Z 

(5-28) 

H 

(5-29) 

■ 

! 

- 

where 
H * 

Y - A S 
(5-30) 

This transfonnation is pictured in Figure 5-4(b) where only one of the 

now decoupled loops is shown. As previously mentioned, the filter, h(t). is 

most commonly a simple single-pole, low-pass filter of the form 

H(s) - 1 + TjS 
(5-31) 

where H(s)  is the LaPlace transform of h(t).    Consider the response of this sys- 

tem to a step input.    It is of the form 

zi(,:) = T+T 

t(l + k^ 
1 + ki exp( ^ ) (5-32) 
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Figure 5-4.    Vector Servo Loop 
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This expression ia a simple exponential (as one would expect from the 

form of the filter) with enhanced time constant, Tei, given by 

T. 
(5-33) 

ei  1 + ^ 

In other words, each loop in normal space has a different time constant, a func- 

tion of the eigenvalue, 1^. associated with that loop. 

If the transformation to normal space is applied to Equation 5-15. 

the expression for the steady-state residue, the result is 

Pr=  I    \ 
1       i=l 

(5-34) 

where 

Ri = 1^1' 
2   ki 

(1 + k,)' 

(5-35) -• 

Not all R. are of significant magnitude in a given case.  It is, there- 

fore, necessary to examine the enhanced time constant, Tfti, for each residue 

fraction Ri which is of significant amplitude in order to estimate the transient 

response time.  It will be noted that both Tel and Ri are functions of the eigen- 

values, k., and of the transformed desired signal, y^ 

The eigenvalues and the eigenvectors which comprise the matrix, A, are 

related to M which, in turn, ia a function of the array geometry and the parti- 

cular arrangement of the noise sources at a given instant. Thus, the transient 

response (or convergence time) of this algorithm ia somewhat more dependent upon 

the statistics of the noise environment than the direct matrix algorithm. 

Geometrically, the matrix A can be pictured as a coordinate tranaforma- 

tion which aligna the coordinate aystem with the principal axea of the paraboloid 

described by Equation 5-15. The relative amplitudes of the eigenvalues describe 

the elipticity of the surface. A wide spread in amplitudes Implies a high degree 
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of ellpticity.  If initial conditions place one near one of the longer principal 

axes, the subsequent descent is not very steep and many steps are required to 

reach the optimum solution. 

One gathers from the foregoing that, while the normal mode analysis 

(as it is termed) provides a good deal of insight into the "post-mortem" examina- 

tion of particular numerical examples, it is still rather difficult to predict 

transient response in general, using this approach. Appendix G derives bounds 

for the time constants T ,. The fastest time constant is limited to 10/(TrB ) 
ei 

by loop noise considerations, where Bs is the signal processing bandwidth. This 

corresponds to about three samples in the digital system if the sampling rate is 

1/B . 
s 

Theoretically, the slowest time constant is longer by a factor of 

Q N(P /P )   where Q is a circuit constant (usually about three) and the JNR 

is measured at one of the channel inputs to the processor. For a 100-loop sys- 

tem and a 40 dB JNR, this factor could be as much as 3 x 10 . In various simula- 

tions, it has been observed that these slow modes are not usually important to 

the output residue. Over those modes with significant Ri factors, the variation 

is more on the order of N:l. This means that the longest important time con- 

stant in a digital system is about 3N samples. 

For an exponentially decaying residue, the residue goes down by about 

8 dB (1/e) for each time constant.  It, therefore, takes about three time con- 

stants to obtain better than 20 dB cancellation. In the slower cases, this 

means that it would take about 9N samples to achieve at least 20 dB cancellation. 

In the most favorable case, it could take as few as 9 or 10 samples. 

The variation in time constant with loop gain (or eigenvalue magnitude) 

is due to the shape of the low-pass filter, h(t). For a simple single-pole re- 

sponse, the function /H(jw)/2 decreases at a constant rate of 20 dB per decade of 

frequency. Thus, the closed loop bandwidth varies approximately the same way. 

Using a higher order filter reduces the variation such that, with the same noise 

bandwidth, the speed of response can be increased by as much as 4:1. The average 
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slope of the open-loop frequency response function is steeper resulting in less 

variation with loop gain over the dynamic range of the systam. 

5.6    COMPARISON OF ALGORITHMS 

: 

The direct matrix algorithm and the steepest descent algorithm can be 

compared in two important ways. The first is implementation complexity and the 

second is convergence rate or transient response time. 

From previous discussions in this section we have concluded that the 

direct matrix algorithm requires a special-purpose processor, some type of vec- 

tor arithmetic unit, for most real-time applications of interest.  If this is 

the case, the computation time is proportional to N (N is the number of input 

channels) and might take 6 ms for a N = 100 case. This would result in a set of 

weights which brought the residue within 3 dB of theoretical optimum. 

The steepest descent algorithm would make use of the same vector ari- 

thmetic unit to perform the weight-and-sum operation. If it takes between 10 

and 9N samples to achieve 20 dB cancellation (see previous page) then the equi- 

valent computation time would be 

10/B < T < 9N/B 
S 8 (5-36) 

where Bs is the signal bandwidth and is also assumed to be the digital sampling 

rate.  If the bandwidth were 10 MHz and there were 100 input channels, T would 

be between 1 and 90 ys. 

In this attempt to compare the performance of the two algorithms, 

there is unavoidably an element of "apples versus oranges" since the method of 

analysis was very different for the two cases. What is needed is a statistical 

analysis of the steepest descent algorithm on the basis of signal-to-noise per- 

formance comparable to the one cited in Appendix F. Appendix H outlines one 

possible start in that direction. 

Until such an analysis is done, one can only point out that, for real- 

time applications, the direct matrix algorithm is limited to those systems with 
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a low N x Bg product primarily because of computation speed limitations.  It 

has the advantage, however, of predictable convergence time. 
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SECTION 6 

THE WEIGHT-STORAGE ADAPTIVE ARBAY 

6.1 PROBLEM STATEMENT 

In the atudy of the balliatic missile defense problem. It has been 

shown that precursor Jamming poses a major threat to the proper operation of the 

radar sensors. A typical radar system for this application employs a phased 

array antenna with 3000 to 5000 elements per face. The precursor jamming threat 

consists of many small parachuteborne jammers distributed as uniformly as pos- 

sible over the defense module and slowly descending to the ground. 

One of the principal advantages of an electronically-steered phased 

array is that it can be rapidly scanned in a relatively short time to several 

diverse parts of the coverage volume in order to perform the various search and 

track functions needed. The most straightforward way in which to design an 

adaptive system to aid in nullifying the jamming is to reinitialize the adaptive 

processor each time the beam is switched, since the scanning of the array signi- 

ficantly changes the inputs to the processor. Thus, while the jamming environ- 

ment is changing relatively slowly, the rapidly scanning antenna places a rather 

artifical requirement1" on the tranaient response of the processor. 

6.2 PROPOSED SOLUTION 

It is possible to take advantage of the slowly moving jammer field in 

several ways in order to sidestep the scanning problem. Particularly for the 

search function, there are a finite number of discrete beam positions employed. 

If the proper adaptive weights for each beam position are stored in a memory 

and used each time the beam is switched to that position, then there will be no 

transient in the adaptive array output. The problem, of course, is to have the 

correct weights stored initially. The way in which this is accomplished depends 

upon the algorithm used. 

+The adaptive processor should reach steady-state within approximately the first 
100 ys after the beam is switched in order to provide performance against close- 

in targets. 
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For the direct matrix algorithm, the covariance matrix inverse is 

first accumulated.  This quantity depends only upon the positions of the jammers 

and not upon the steering of the array.  Since at least one constraint will usu- 

ally be employed, the methods of Appendix D (see Equation D-6) are applied se- 

quentially for each beam position to compute the weights.  The new weights are 

then stored in memory in place of the previous estimate.  Once the weights for 

each beam position are updated, the whole process is repeated. Meanwhile, the 

beam-steering processor uses the weights stored in memory as needed to scan the 

beam.  The entire refreshing process must be repeated often enough to account 

for the motion of the jammers relative to the array. 

For the loop-type processor, a slight variation of the same technique 

is used.  Each time the beam is steered to a given position, the weights for 

that position are used as initial conditions in the loops.  During the dwell at 

that beam position, fine adjustments are made to the weights according to the 

motion which has occurred since the last update.  Just prior to scanning to a 

new beam position, the updated weights are stored back in the memory to become 

the initial conditions for the next time.  When the system is first activated 

or when a new jammer first turns on, there will be a noticeable transient in the 

output residue but this will soon die out.  Again, the restriction is that each 

beam position be visited often enough to keep up with the motion of the jammers. 

Except for the possible future use of Charge-Coupled Device (CCD) mem- 

ories, the weight storage is most easily accomplished digitally. If an analog 

system is desired, a hybrid loop approach can be employed in which an analog 

modulator is used for weighting the analog inputs, a single high speed analog- 

to-digital (A/D) converter is used in the residue path, and a digital multiplier 

is used in place of the analog correlator.  The modulator could either be driven 

with digital weights directly, or a digital-to-analog (D/A) converter could be 

inserted for the purpose.  Note that this technique avoids the use of individual 

A/D converters in each element input. Hard limiters (one bit A/D converters) 

are used to drive the digital correlators. 

, 

6-2 
■ 

D 



1 "■   " '*mm Hmm*\wnfmm "'"-'-■-"~ 

. 

I 

i 
Ü 

I 

I 

I 

i I »n 

In any case, the crux of the entire weight storage question centers 

upon the relationship of the motion of the jammers to the update time of the 

processor.  In order to obtain a feeling for the interaction between jammer mo- 

tion and update time, a simulation study was undertaken. 

6.3 SIMULATION - GEOMETRY 

Figure 6-1 depicts the assumed geometry for the simulation. Jammers 

were assumed to be randomly distributed in a horirontal plane covering the area 

defended by the radar. The rate at which the jammers descended was made a vari- 

able parameter. 

The array was assumed to consist of 518A elements arranged in a re- 

ctangular aperture and on a halfwave square grid of rows and columns. The adap- 

tive processor was configured in a row-column connection with a total of 144 de- 

grees of freedom (72 rows and 72 columns). 

6.4 SIMULATION - METHOD OF ANALYSIS 

There are at least three ways in which the simulation could have been 

designed. If the voltages at the antenna due to jamming and thermal noise had 

been simulated by random number generators, then either the direct matrix al- 

gorithm or the digital form of the steepest descent algorithm could have been 

employed. The method which was chosen employs the smoothed differential equa- 

tion describing the analog version of the control loop or steepest descent al- 

gorithm. 

Using the known array and jammer geometry, covariance matrices were 

computed for 20 instants in time corresponding to "snapshots" taken once a sec- 

ond during a selected portion of the jammer cloud descent. Each matrix was then 

solved for its set of eigenvalues and ths corresponding modal matrix. 

For the first interval, the quiescent weights for the array were trans- 

formed to normal coordinates and used as initial conditions in the weight equa- 

tions. These equations are of the form 
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Figure 6-1. Precursor Jammer Geometry 
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Zi(t) = zoi exp(-t/Tei) + zfi(l " exp(-t/Tei)) 
(6-1) 

•; 

mm 

■    ■■. 

1 - ( 

^..r. . , and zf< are, reapactlvely. tha Initial and final valnea of a, and I 

1. the "enhanced tl»e conetant tor the 1'th ->de (see Section 5 end Appendix G for 

details on the transient analysis). 

Time was then allowed to vary from zero to the end of one radar beam 

dwell time. For the simulations, one dwell was assumed to be about 200 ys.  The 

normal mode weights for this time were then transformed back into real space and 

stored. 

The entire process was then repeated for the second and succeeding 

intervals using the final values for the weights on one cycle as initial condi- 

tions in the next cycle. During each dwell period, the residue was computed and 

plotted. 

Of the simulations run. two cases were selected for presentation as 

representing typical performance. Both cases consisted of a cloud of 200 jam- 

mers randomly distributed in a plane 60 x 60 nmi centered over the defended area. 

The nominal rate of descent was fixed at 1500 ft/min.  In the first case, ran- 

dom array errors equivalent to -5 dBi were assumed.  Total steady-state cancel- 

lation was about 14 dB (limited by the array errors). Figure 6-2 shows a plot 

of the transient response, that is, the level of the residue with respect to 

the final steady-state value. For each vertical line segment, the upper bound 

represents the initial value of the residue during that sweep while the lower 

mark shows the residue at the end of the sweep. 

The upper curve shows the performance assuming a one second frame 

time  TVo and three second frame times are shown in the center and lower curves 

(alternatively, the middle and lower curves could represent descent rates of 

3000 and 4500 ft/min at a Is frame rate). 

Note that steady-state is all but reached in one sweep. Motion of the 

jammers between looks causes a slight regression in the residue, which is some- 

what worse for the longer frame times. 
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Figure 6-2.    Transient Response Simulation - Case 1 
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In order to determine the effect of errors on the transient perfor- 

mance the error level was lowered considerably In the second case, shown in Fig- 

ure 6-3.  The steady-state cancellation was on the order of 38 dB (note that the 

vertical axis extends only to 20 dB).  Over 25 dB of cancellation is achieved 

in the first sweep.  Sweep-to-aweep regression is higher in this example be- 

cause the absolute magnitude of the residue is considerably smaller than in 

the first example. 

The results of these simulations indicate that the precursor jammer 

threat exhibits sufficient stationarlty to allow the weight storage technique 

to be effective in overcoming the transient response limitation caused by rapid 

array scanning requirements. 

For this simulation, simple single-pole filters were assumed for the 

steepest-descent loop equations.  If higher order filters were employed, the re- 

sponse could have been speeded up by a factor of 3 to 4:1. 

11 

I 

It must be pointed out that the weight storage technique depends upon 

maintaining the stationarlty of the jammer environment. This has implications 

concerning the use of frequency agility. A separate set of weights must be 

stored for each beam for each radar frequency channel used. For the loop al- 

gorithm, this poses no particular problem since each beam is essentially an in- 

dependent calculation. All that Is needed is to have a particular beam always 

used at the same frequency. As the system is scanned from beam to beam, a side- 

lobe jammer sees an apparently frequency-agile radar since subsequent beam posi- 

tions would use different frequency channels. If more than one frequency is re- 

quired for a particular beam position, additional receiver channels would have 

to be supplied and parallel computations performed for each frequency. 

The direct matrix algorithm computes one matrix for all beams for one 

frequency. It would, therefore, have to repeat all calculations for each new 

frequency for all beams used in the scan. One would then, however, have the 

freedom to use any frequency at any beam position. 
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SECTION 7 

DISCRETE BEAM TRACKING STUDY 

7.1  INTRODUCTION 

The feasibility of acquiring and tracking reentry vehicles (RVs), using 

only those radar beam positions used in search mode, has been investigated. The 

results obtained do not show that the difficulties with discrete beam tracking 

can be easily overcome by a nominal increase in transmitted energy, as had been 

conjectured. The primary difficulty with the discrete beam tracking technique 

is that, early in a track, when the error ellipse is large, selection of the op- 

timum beam for track pulse transmission is an uncertain operation.  In a low sig- 

nal-to-jammer ratio (SJR) environment, wrong beams are frequently selected, and 

the resulting high beam-shape loss causes missed detections or. at best, increased 

measurement errors.  This effect leads to a greater number of precommit track 

losses, and also makes the impact point prediction and intercept planning tasks 

more uncertain, which is especially Important in a low-altitude ballistic missile 

defense (BMD) system. 

The problems of discrete beam tracking can be countered by a more care- 

ful track initiation procedure than was used in obtaining the present results, as 

well as a local search procedure which would facilitate recovery from a wrong 

beam selection. Another effective step would be to decrease the packing factor 

of the search beam lattice. The beam-shape loss caused by wrong beam selection 

would then be decreased. 

7.2 METHOD OF GENERATING RESULTS 

The Advanced ECCM* Radar Simulation(10) developed for the Ballistic 

Missile Defend Advanced Technology Center (BMDATC) under an earlier contract 

was used to simulate an attack of 60 RVs on the 8 silos closest to the radar, as 

shown in Figure B-2. Trajectory elevation angles were evenly distributed be- 

tween 15°. 25°, 35°. and 45°. Trajectory azimuths were randomly distributed over 

Electronic Counter-Countermeasures 
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the range from -20° to +20°. Track initiation was attempted at ranges correspond- 

ing to the far boundary of a search volume having a 60 to 80 kft altitude horizon- 

tal section, tapered at the lower elevation angles. The average acquisition range 

was 15A kft.  The beam-center SJR at acquisition (SJRo) was varied (12, 15, 18, 

21, 23 dB) for each simulation run, as was the beam steering method (discrete or 

continuous). Gaussian measurement errors were simulated. 

Reentry vehicles were assumed to be detected and verified by the search 

beam closest to the true RV position. Track initiation pulses were transmitted 

until the one-dimensional angle rate error variance was reduced to 0.05 rad /s , 

or an acquisition failure occurred.  For RVs which were successfully acquired, 

Kaiman filter tracking at a 20 Hz rate for 6 s was attempted.  Statistics were 

compiled on acquisition failures, track losses, and position tracking errors. 

For the case of continuous beam tracking, the radar beam was steered 

directly at the predicted direction cosine estimates provided by the polynomial 

or Kaiman filter. For discrete beam tracking, the beam was steered at the search 

beam position closest to the predicted estimates. The search volume packing fac- 

tor was 0.88. 

-,1B 

«fc 

fMi 

7.3 RESULTS AND CONCLUSIONS 

Percentages for successful acquisition and tracking are given in Fig- 

ure 7-1. For the cases of very high or very low SJRo, the success percentages 

of the two beam steering techniques are seen to be essentially equivalent. For 

the middle range of SJR , substantial increases in transmitted energy are seen 

to be needed for the discrete system to match the performance of the continuous 

system.  For a 95% probability of acquisition, for example, the discrete system 

needs about 4.5 dB higher SJR than the continuous. For a 90% probability of 

successful tracking, 6.5 dB higher SJRo is required. 

Tracking accuracy statistics, shown in Figure 7-2, also indicate that 

more than a nominal 3 dB energy increase la needed for the digcrste beam system 

to match the continuous. 
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Figure 7-3 illustrates the primary difficulty with discrete beam steer- 

ing - wrong beam selection. The track at the top. initiated with a relatively 

high SJR. experiences little difficulty in choosing the closest search beam. At 

the bottom of Figure 7-3. the same trajectory is flown, but the lower SJR causes 

a wrong beam to be chosen early in the track. When this occurs, gaps in the data 

result, and the track is frequently lost. At best, a serious degradation in track- 

ing performance occurs in the crucial precommit track period. 

The three methods suggested earlier for overcoming the difficulties of 

discrete beam tracking are: 

1. 

2. 

A better track initiation procedure. The procedure used in 
generating the current results is one which has been found 
to work well when continuous beam steering is used. For 
discrete beam steering, a useful modification would be to 
use a single, non-standard beam* for initiating each track. 
The gain in acquisition probability associated with this 
procedure would probably far outweigh the ptic. which must 
be paid in settling time. The same non-standard beam, cen- 
tered on the estimated target position, would then be used 

for all track initiation pulses. 

A more active local search function. When continuous-beam 
steering is used, a tracking system will normally enter a 
local search mode after a fixed number of consecutive missed 
hits. If discrete beam steering is being used, the local 
search "threshold" needs to be set lower, because of the 
possibility of wrong beam selection. The Advanced ECCM Radar 
Simulation at present lacks the local search model needed to 
properly evaluate the tracking performance of discrete beam 

steering. 

A lower search beam lattice packing factor. Many of the 
discrete beam acquisition failures occurred ^r those tar- 
gets which were near search beam boundaries. These targets 
suffered high beam-shape losses even when the correct beam 
was selected. An obvious way to counter this problem is to 
lower the packing factor; that is. to pack the search beams 
in more closely. Some of the time saved by weight holding 

may need to be expended in this manner. 

Although these methods have not been actually evaluated in the simulation program, 

it is clear that their use will allow discrete beam tracking performance to ap- 

proach that of continuous beam tracking as closely as desired. 

3. 

Not necessarily a search beam. 
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APPENDIX A 

COMPARISON OF TRACKING PERFORMANCE WHEN DISCRETE-BEAM 
STEERING IS USED AND MEASUREMENT ERRORS HAVE EITHER 

GAUSSIAN OR PHASE COMPARISON DISTRIBUTION 

One difficulty with discrete beam tracking was expected to arise from 

the fact that a phase comparison monopulse system yields biased measurements when 

the tracked object is off the nose of the beam   . An attempt was made to de- 

termine the effect of this bias on discrete beam tracking accuracy.  Surprisingly, 

an improvement, rather than a degradation, in tracking performance was observed 

when the simulated measurement errors were changed from gaussian to phase com- 

parison. The improvement was most likely due to a calibration method used, as 

described in this appendix. 

For the case of gaussian angle measurement errors, the standard devia- 

tion is governed (approximately) by the formula 

BW a = (A-l) 

k fSJR 
m ' 

Since the correct value to use for k has been controversial, it was determined 

to perform some calibration runs for various values of km and to pick the one 

which most closely approximated the phase comparison case. Twenty incoming RVs 

were simulated, all flying the same trajectory — down the radar's mechanical 

boresight. Average tracking errors were calculated. At all times the radar beam 

was steered directly at the RV's true position — not at its estimated position. 

The acquisition SJR was 21 dB. The results, shown in Figure A-l, indicate that 

k = 1 is an acceptable value.  It was used for all the gaussian simulation runs. 
m 

Figure A-2 shows a comparison of tracking performance when discrete 

beam tracking is used with gaussian angle measurement errors, and with phase 

comparison angle measurement errors. Runs were made for SJR - 12 and 21 dB. 

Contrary to expectation, the tracking performance with phase comparison errors 

was significantly better than with gaussian errors. This occurred for SJRo = 

21 dB as well as 12 dB. 
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Obviously, the effect of any measurement bias on discrete beam track- 

ing accuracy cannot be analyied unless or until a different method is found for 

determining equivalent-variance gaussian and phase comparison measurement errors. 
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Figure A-l.     Results of Calibration Runs 
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APPENDIX B 

TRAJECTORY STUDY IN COSINE SPACE 

In the simulation runs made while studying discrete-beam tracking, the 

possibility of an RV flying outside the search volume was discounted.  Instead, 

the entire sky was assumed to be filled by a lattice of search beams.  This was 

justified on the grounds that if discrete beams were "strung" along a trajectory 

(Figure B-l) outside the search volume, the resulting tracking performance would 

closely approximate that obtained by assuming that RV trajectories would always 

be covered by a lattice of search beams. 

In order to estimate the frequency of RVs flying outside the search 

volume during the course of an intercept, some worst-case trajectories were gene- 

rated and plotted in cosine space. The trajectories were started at radar ranges 

where they might normally be detected and flown toward their target silos until 

they either passed out of the quadrant covered by the front face of the radar, 

or descended to an altitude of 5 kft. 

The trajectories were worst-case in the sense that their elevations 

and azimuths were all on the extremes of the assumed threat distributions (i.e., 

15» and 45° for elevation, and ± 25° for azimuth).  Other trajectories, which 

passed directly over the tracking radar, were also flown and plotted.  Target 

silos were the 16 closest ones to the tracking radar, as shown in the module 

layout diagram. Figure B-2. 

The trajectory plots are shown in Figure B-3. The triangular contour 

in these figures represents the cosine space boundaries of the quadrant which 

would be assigned to the radar's north face, assuming the face is tilted 30° from 

the vertical. The search volume shown is one that might be assigned to the east 

radar if the two northernmost radars were assigned the task of Inrcr. onLl...-nl «I 

ballistic missile (ICBM) search.  The azimuth UmltH are -25° to >'>0", «ml Lite 

elevation limits are 5° to 55°. The trajectories which are represented only as 

dots never entered the north quadrant and so were terminated immediately. 
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The primary conclusion, not unexpected, to be drawn from these plots is 

that only a small percentage (less than 10%) of the trajectory lengths are out- 

side the search volume. Furthermore, the ones that are outside the search volume 

could be easily handled by the east face of the west radar in the module. The 

radar cross section (RCS) enhancement due to a more favorable aspect angle would 

most likely result in the tracking function for such trajectories being assigned 

to the west radar even without regard to canceller settling time. Discrete beam 

tracking, therefore, is found to be a workable procedure. 

Another fact worth mentioning is that, near intercept, the typical 

trajectory is cutting across beams at a much more rapid rate than it was at de- 

tection. The time gained in stringing discrete beams along a trajectory outside 

the search volume is not likely to be substantial if the RV is changing beams 

every 0.2 s. 
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APPENDIX C 

SIMULATION OF THE SEARCH FUNCTION AND DISCRETE BEAM TRACKING 

Beam positions in a search volume in cosine space are arranged on a 

hexagonal closest-packed lattice (Figure C-l).  The packing factor, denoted PF, 

is defined as the distance between beam centers divided by the 3 dB beamwidth. 

The one-way beam-shape loss in dB, denoted BSL^(dB), associated with 

a given target position and a given beam position, is given by 

BSL^dB) = 12 
■6\2 

BW/ 
(C-l) 

where 6 is the angle between the nose of the beam and the target, and BW is 
e 

the 3 dB beamwidth.  This formula is an approximation which is accurate for 

8 < 0.9 BW. 
e - 

The worst-case BSL1(dB) associated with a search volume is related to 

the packing factor by 

worst-case BSL^dB) 4 PF (C-2) 

When the worst-case BSL1(dB) is specified, and the required PF is computed, the 

following results are obtained: 

Worst-case 
BSL1(dB) 

3 
2 
1 

Required 
PF 

0.866 
0.707 
0.500 

When discrete beam tracking is being used, the center beam of the cluster shown 

in Figure C-l would be selected only If the estimated RV position was inside the 

small hexagon shown in the figure.  Each beam position has such a hexagon asso- 

ciated with it. The hexagon, therefore, represents the "effective area" of its 

beam, and it has an area of 

K 
2 

PF BW (C-3) 

C-l 

i 

 1 -ii «^m riM ■1-'-|iMn^ l-i WtiltTMiarV--' ■ -■  T ^«" --•--'-.—«--■--—.-■^--^. ^■^-.•■^^■^^.-.. ■   --■  .. .^^..^ •-  ..   -   -^ 



<m^ mmmm 1 ! '    l" "'■«■■> 

Figure C-l.  Search Beams on Hexagonal Closest-Packed 
Lattice in Cosine Space 
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NOTES: 
1. PF = 0.707 
2. EACH CIRCLE REPRESENTS 

3 dB CONTOUR OF A BEAM 
3. SMALL HEXAGON REPRESENTS 

EFFECTIVE AREA OF A BEAMS 

^ .PF2.BW2 
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This relation can give the number of beams required for a search volume, if the 

cosine space area of the search volume is knovm.  It also says that reducing 

the packing factor from 0.866 to 0.707 requires 1.5 times as many beams, and re- 

ducing it from 0.866 to 0.5 requires 3 times as many beams. 

The average two-way beam-shape loss which would be experienced in dis- 

crete-beam tracking if correct beam selection always occurred is 

[ 

   10   2 
BSL2(dB) = ^jPF^ (C-A) 

The assumption of correct beam selection has been found to be not valid early 

in a track, but for later in the track, this formula can be used to estimate 

the power increase needed to offset the discrete beam tracking loss.  A deriva- 

tion follows. 

The small hexagon in Figure C-l can be broken up into 12 similar tri- 

angles, one of which is shown in Figure C-2.  The average two-way beam-shape 

loss will be computed over this triangle. 

BEAM 
CENTER 

TWO-WAY BEAM-SHAPE LOSS 
ASSOCIATED WITH A POINT = 

Figure C-2. Average Two-Way Beam-Shape Loss 

C-3 
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The average two-way beam-shape loss is 

PF-BW 
TT/6 2 cos 

BSL2(dB)  ^ J /    J   «t-k )4 rdrdB 

where A is the area of the triangle. 

Let u = 
r 12. ... _ 2rdr ; rdr = -r du 
BW 

; du = 
BW 

BVT 
2 

IT/6 
2  r   2 

BSL2(dB) 

11/6 4 co32e 2    r 
= i   f  J  12 BW2 ududO = ^L J  * 

(C-5) 

PF 

A cos" 

dÖ 

0  o |o 

TT/6 

12 BW2PF4  f   d9   , 3BW2PFA [ 1 sini_ + 1 tane 
"   32A   J     4e      8A    L3cc)s3e  3    J 

TT/6 

But 

TT/6 

A = 

2 A 
5BW PF 

12 (TA 

PF «BW 
2 cos0 

(C-ö) 

TT/6 

0 

rdrdÖ - •    2 

0 

A  PF
2BW2 ,nn 1 . PF2BW2 

A = —5  tan fi      r— 
8       b    8 f3 

PF «BW 
2 cosö 

TT/6 

de = 
2 2 

PF BW de 
cos 

so that 
10 „,,2 

(C-7) 

(C-8) 
BSL2(dB) = ^ PF 

The formula just derived should not be used when simulating the search 

function in a BMD system.  The assumption of an average 4 dB beam-shape loss 

for computing search detection probability, which has been used at times in the 

C-A 
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■ ■   ■  ■ - -"  



rm*^mi**^ 

i past. 1. 1.« subsuantially in error. The lattice arraa^nt a£ search he^s 

L so„e cases «111 resuU in .. overall detection prohehillty higher than the 

single-hit probability if the target is on the nose o£ e been. 

As s psrt o£ this stud,, s more refined method of simul.tlng the 

aaarch function .as derived. Detection and messureme« correction ««"»"" 

obteined which should be spplled to the beam-nose SIR »hen computing detection 

probahilitv and data SJR. respectively. These correction fectors hsve been 

plotted in Figures C-3 end C-4 for soms typical value, of PF. false alarm rats, 

and beam-nose SJR. 

The correction factors were computed by a Monte Carlo method, assum- 

ing that only the three closest beams from the search lattice are capable of de- 

tecting a target. With any RV in the search subvolume being ^'^TL 

associate three detection probabilities, P.U). 1 - L 2. 3. The probability 

of obtaining at least one detection is then 

(C-9) 
? /at least one hit! 1 - u (1 - Pd(i)) 

i=l 

This probability will vary, due to beam-shape loss variations, with the tar e s 

position in the triangle defined by the centers of the three closest beams (Fig- 

ure C-l). To remove this variation, an average probability was computed by uni- 

formly distributing 250 points in the triangle and using a Swerling III model 

t0 compute the probability of at least one hit. After averaging, a Newton-Raph- 

son method was used in conjunction with the Swerling III curve to determine the 

SJR which would give the same single-hit probability of detection. This was 

compared with the true beam-nose SJR to obtain the detection correction factor. 

If a detection occurs, we are faced with the problem of determining 

the most likely SJR of the return, for use in generating measurements. The 

Monte Carlo technique was also used here, along with the following formula con- 

cerning conditional expectations and probabilities: 

3 

i/sJR/HJ   - I    E(SJR/J hits occur}-  Pr(j hits occur/Hj (C-10) 

C-5 
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Figure C-3.  Correction Factor Sensitivity to Packing Factor and SJR 
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Figure C-4. Correction Factor Sensitivity to False Alarm 
Rate and SJR (Sheet 2 of 2) 
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where H is the event "at least one hit occurs." For each point in the Monte 

Carlo simulation, the SJRs of the possible returns were computed and weighted 

by the detection probabilities as follows: 

/       3 

E[SJR/H!   =     I     SJR(i)P.(i)      TT      (1   -  P.OO)/!   -   TT   (1   -   P   (j)) 
i     ;   i-i        d    m       d   /    j-i 

I 
+ 1 

k^i d 
P,(k)-SJR(k) 

1=1 5    P   (k) k^i *dW 

I P   (i).SJR(i) 
i-1      

(i - p^i)) IT p.(k)/i - IT (i - p.a)) 
k^i j-1 

TT    P.(i)/1 
1-1     d 

TT   (1   -   Pd(j)) 
j-l 

(C-ll) 

i    i'l This expectation, averaged over the random locations, was compered with the 

true beam-nose SJR to obtain the measurement correction factor. 

i ■ 

If  these correction factors are used in a simulation, an improvement 

in search performance will be realised over that obtained by assuming an average 

4 dB beam-shape loss in search mode. 

C-9 
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APPENDIX D 

THE USE OF LINEAR CONSTRAINTS IN THE ADAPTIVE PROCESSOR 

D.l DEVELOPMENT 

In its simplest form, the adaptive array processor seeks a solution 

which optimizes the output SNR with the form of the signal specified but with 

no other restriction placed on the solution. Frequently, it is desirable to 

restrict the solution in certain additional ways. An example of this is the 

placing of a simple constraint on the amplitude of the response of the array in 

the direction of the desired signal. 

Frost 
(9) 

The mathematical development which follows is based upon a paper by 

We begin with the residue function 

W1^ W (D-l) 

We wish to find the value of the vector W which minimizes the residue 

power, P , subject to the constraint 

^W = F (D-2) 

Let the dimension of the vector W be N. Let C be an N x J matrix and F a J- 

element vector. The columns of C are the constraint vectors. The elements of 

F represent the inner products of each of the constraint vectors with the weight 

vector and are assumed to be given. 

Using the method of Lagrange multipliers, we first form the cost func- 

tion including the statement of the constraints. 

H(W) = y W M1^ + X (cSf - F) (D-3) 

Taking the gradient of H(W) with respect to W and setting it to zero yields 

.-1    * W        = -M opt C    X (D-4) 

D-l 
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Substituting Equation D-4 into Equation D-2 yields 

or finally. 

t -1 * -1 
\  = -(CCM XC )  F 

-1 *  t -1 * -1 
W   = M C  (CM C )  F 
opt 

(D-5) 

(D-6) 

As a simple example, let the gain be held constant in the direction 

of the desired signal.  That is. 

S W = 1 (D-7) 

which is a specific example of the constraint Equation D-2.  For this example, 

the dimension J = 1 (a single constraint), C = S, and F = 1.  Equation D-6 then 

becomes the familiar 

-1 *  t -1 *v-l 
W   = M ■LS (S M ""S ) 
opt 

(D-8) 

It can easily be seen that Equation D-8 satisfies the condition specified in 

Equation D-7. 

A more general example of the application of linear constraints con- 

cerns the requirement for quiescent weighting which is other than uniform illu- 

mination. Perhaps Dolph-Tchebychev weighting is desired in the absence of jam- 

ming, or perhaps a monopulse difference pattern is being employed.  In any case, 

let the desired weighting vector be given by 

(D-9) 
*    * 

T = aS + bR 

where a and b are scalar constants and R is a unit length vector orthogonal to 

S*.  That is, the vector T is expressed in terms of mutually orthogonal compo- 
*    *   * 

nents S and R .  R is given by 

*   FT 
R = -7r- 

IPTI 
(D-10) 

where P is the complimentary projection operator 

* t. 
P = (I - S S ) (D-ll) 

D-2 

D 

D 

rfjüi 
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Referring to Equation D-6, the dimension J is two and the columns of C are S and 

R, respectively. The vector F is seen to be 

F = (D-12) 

D 

fl 

The weight vector W can, of course, be expanded in any one of an in- 

finite set of orthogonal basis vector sets. If, however, that set is chosen 
*    * 

which includes S and R , then one can see that the solution is constrained such 

that the coefficients of these components are always a and b. All other changes 

in W are constrained to directions perpendicular to the plane containing S and 
* 

K • 

(9) 
Frost   goes on to develop a steepest descent algorithm based upon 

the same concepts. He shows that the expected value of the correction applied 

to the weight vector at any step Is given by 

E(Wk+l " V - "k PMP Wk (D-13) 

t 
where now P is the more general form of the complimentary projection operator 

(D-14) 
* - t *.-! t 

P = I - C (C C ) C 

The modified covarlance matrix PMP can be shown to have exactly J zero 
* 

eigenvalues corresponding to the J columns of the matrix C , assuming that the 

latter were chosen to be mutually orthogonal in the first place. This means 

that the increments applied to the weight vector (as in Equation D-13) are con- 

strained to the N-J hyperplane described by the set of vectors which contains 
* 

no components in the directions described by the columns of C . 

D.2 IMPLEMENTATION 

With reference to Equation D-6, implementation of the direct matrix 

inversion algorithm using constraints would involve the Inversion of the J x J 

i 

If the columns of C are unit length mutually orthogonal vectors, CTC = I. 

D-3 
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matrix cW for each beam formed (since C is different for each beam). For 

one. two, or even three constraints, it is conceivable to write out the general 

solution for the inverse, thus avoiding the requirement of computing a matrix 

inverse for each case. 

The Frost form of the steepest descent algorithm is designed to control 

the accumulation of errors (due to roundoff, etc.) in the determination of the 

constrained solution.  The iteration algorithm is given by 

W, 
* t. = P  (I - y V v"-) W.   + ifJ 

A 

where P  is given by Equation D-14 and !|) is given by 

(D-15) 

*   T * -1 
^ = c (c^c ) Lf (D-16) 

The process is started with the initial condition 

W0 = * 
(D-17) 

Noting that the factor vS^ is the residue vrk for the k'th step, the computa- 

tion for each step involves the multiplication by the matrix P of the vector 

W -v V* and a vector addition of ^. Unless P is of a simple form, this in- 

volvesV multiplications per iteration (or N vector multiplications) which is 

somewhat more complex than was the unconstrained algorithm. 

. 

i 

D-4 
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APPENDIX E 

DERIVATION OF MATRIX INVERSE RECURSIVE UPDATE RELATIONSHIP 

In the real-time processing of data for adaptive arrays, one wishes 

to perform the following operation repeatedly for each new sample for data: 

(E-l) Mi+i » (« "i + &[ Vi)"1 

The matrix M. can always be represented in terms of the sum of diadics. 

Consider the following development which leads to a result of the form 

(E-2) 
ITA    1 

Start with the expression 

M        ■ M      - A "i+l        1 

(a Mi + 3 V*vJ) ( i M^1 - A)  = I (E-3) 

Expanding this equation and dividing through by a yields 

-^- vV M"1- ^ V*Vt A - M A = 0 2    i 1    i      ex vivi A     "i a 
(E-4) 

With some insight into the form of the desired result, we make the following hy- 

pothesis of the form of the matrix A: 

-1 * t -1 
A = y 1^ X v^l M^ (E-5) 

This expression is substituted into Equation E-4 and the terms involving y are 

(E-6) 

t -1 * grouped, noting that the quadratic form V M V is a scalar. 

from which 

„ [f (vj M;1 <, + i] vlvj *? - Sj vjvj M-/ 

a 
(E-7) 

or finally. 

E-l 

:  1 

i 
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t 

M-i = i M-i _ y M:1 vS^ M;1 

1+1  a i     1  i i i 
(E-8) 

One must now intelligently select the values of the constants a and ß. 

To obtain a form of ^ which is a simple average over K samples, one chooses 

01 = rTK   '   ß = 1 + K 
(E-9) 

This form is suitable for processing finite blocks of data since, for 

large K, the most recent samples have smaller and smaller effect on the solu- 

tion. 

If one wishes to process continuously and under quaslstationary (slowly 

changing) conditions, a better form consists of 

Ot « p ,  3 ■ 1 - P »  P<1 (E-10) 

This has the effect of multiplying the K-J'th sample by pJ so that old data is 

gradually "forgotten" in an exponentially decaying fashion. 

E-2 
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APPENDIX F 

CONVERGENCE FOR THE DIRECT MATRIX INVERSION TECHNIQUE 

In a recent paper by Reed,   there is developed a relationship which 

bounds the number of samples required to form an acceptable estimate of the sam- 

ple covariance matrix. A brief outline of that development will be given here. 

For arbitrary weight W, desired signal S, and true covariance matrix 

M, the SNR at the output is given by 

SNR ■ S^ V^S* (A W) ■:L (F-l) 

I 

u 

L 

The theoretical optimum weighting is 

-1 * 
W   = a M S 
opt 

Substituting Equation F-2 into Equation F-l yields 

t -1 * 
SNR   = S M S 

opt 

(F-2) 

(F-3) 

Let p be the ratio of "iquation F-l to Equation F-3, that is, a meaüure of the 

optimality of an arbitrary weight vector, W. 

p = SNRW/SNR( opt 
(F-4) 

For the direct matrix solution, the estimated optimum weight vector, 

W, is given by 

W » a M S (F-5) 

where M is the sample covariance matrix. 

Combining Equations F-l and F-3 through F-5, the expression for p be- 

comes 

p W = (St:M"1S*)2(StM":LM M"1S*)"1(StM"1S*)~1 

The sample covariance matrix is given by 

(F-6) 

F-l 
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A       1 *   t 

«K ■ I A Vi Vi 
(F-7) 

The statistical behavior of ML can be described by a complex Wishart distribu- 

tion, CW(K, N, M), with parameters: K, the number of samples; N, the order of 

the matrix; and M, the true covariance matrix. Using this and the fact that 

CHM C (where C is any non-singular transformation) is also CW(K, N, C^l C), Reed 

uses the previous work of Goodman and Capon to derive the first and second mo- 

ments of p. 

E(P) = (K + 2 - N)/K + 1) (F-8) 

.. 

; I ? 

and 

E(P2) 
(K + 2 - N)(K + 3 - N) 

(K + 2)(K + 1) 
(F-9) 

F-2 
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APPENDIX G 

BOUNDS ON THE CONTROL LOOP TIME CONSTANT 

The smoothed control equation for the weights in an analog control 

loop implementation of the adaptive processor can be shown to be 

W(t) = S - h(t) (*) G M W (t) (6-1) 

where S is the desired signal response, h(t) is the filter impulse response, G 

is a diagonal matrix of electronic gains, and (*) denotes convolution.  The fil- 

ter generally used is the simple low-pass filter given by 

H(s) - 1/(1 + TjS) (G-2) 

where H(s) is the Laplace transform of the impulse response h(t). Making the 

standard transformation to "normal" or decoupled coordinates using the modal 

matrix transformation A (see Section 5), one obtains 

Z - Y - h(t) (*) K Z (G-3) 

where 

W = A Z 

H * Y = AS 

and the diagonal matrix of eigenvalues, ki, is given by 

K = AHG1/2M G1/2A 

(0-4) 

(G-5) 

(G-6) 

The expression for the i'th normal mode weight, z^,  is given by 

^i 
zi(t) = 1 + k. 

t(l + ki) 
1 + kk exp( j  ) 

or the enhanced time constant for the i'th mode is 

T, 

ei  1 + k. 

(G-7) 

(G-8) 

c 

G-l 
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In order to bound the time constant T , it is necessary to examine 

Equation G-6 in more detail.  Assume that the processor consists of N identical 

channels, each containing equal amounts of uncorrelated thermal noise with power 

P and correlated jamming with power P.. The gain matrix, G, simplifies to the 
n J 
scalar g given by 

g-q/(p +py
/2Pi/2 (G-9) 

assuming that a hard limiter is employed in the loop (without the limiter, g = 

Q). Q is a circuit constant.  The matrix M is given by 

M = P I + P. R (G-10) P I + P. R 
n    j Tt 

where I is the identity matrix and R contains the normalized correlation coeffi- 

cients p...  Substituting Equations G-9 and G-10 into Equation G-6 yields 

K = 
(1 + Pj/P^ 

1/2 
I + pi AHR A (G-ll) 

The trace of R is N.  Similarly, the trace of A R A is also N (the lat- 

ter matrix being diagonalized).  For the simple case of one narrowband jammer, 
u 

there is only one non-zero element in A R A and it's value is therefore N.  For 

more complex situations, there are more non-zero elements but the sum (or trace) 

is N. Thus, the bounds on k are 

k .  = Q /(I + P./P) min  ^      j n 
1/2 (G-12) 

and 

k   = k ,  (1 + N P,/P ) 
max   min       j n 

(G-13) 

Substituting these relationships into Equation G-8 yields 

I i Te   = TT max   I 
(G-U) 

and 

G-2 

0 

D 
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Te 
nin      1 + Q N (Pj/P^172 

(G-15) 

i 

There is a practical limit on the value of the time constant, Tj, which 

places a lower bound on it.  If the enhanced bandwidth (inversely proportional 

to the enhanced time constant, Te) of a loop exceeds more than about 10% of the 

signal processing bandwidth B , the weights become noisy and contribute to in- 
s 

creased noise residue.  Thus, the limit on Tj, the filter time constant, is 

min 
10 Q N (P./P )

1/2
/(TTB ) 

j n      o 
(G-16) 

In summary, then, the time constants of a system (which has been adjusted 

according to Equation G-16) can be expected to fall in the range of 

10/(TIB ) < T < 10 Q N (P./P)1/2/(TTB ) 
s — e —        J "      a . 

(G-17) 

Typically, Q is 3.16.  For N - 100 and a 40 dB JNR, the range of time 

constants is 3 x 10 :1. 

i^. • 

G-3 
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APPENDIX H 

AN ATTEMPT AT A STATISTICAL ESTIMATE OF CONVERGENCE 
TIME FOR THE STEEPEST DESCENT ALGORITHM 

In Appendix F, it is shown that the convergence rate of the direct mat- 

rix algorithm can be estimated using the statistical properties of the sample co- 

variance matrix. It is desired to make the same estimate for the steepest des- 

cent algorithm so that the two algorithms can be compared on the same basis. 

Because the analysis in this appendix is incomplete, only the initial steps of 

the development are indicated. 

Consider the simplest form of the steepest descent algorithm: 

wi+1 - (I - kV* vj ) wi (H-l) 

1 
If the initial value of W is 

W1 = S 

then, after K iterations the result is 

K 
W 

* „tx  * 

K+l 
TT  (I - kVi Vp S 
i=l 

Expanding, one obtains 

*.t * t. *  tv   * 

\+l  = (I - kVlVl)(I ' ™2V2H""Hl '  kVKVK)S 

(H-2) 

(H-3) 

(H-4) 

or 

W, K+l 
I - kK MJJ + I kV*vJ (kK i^ - kV*vJ) 

+ .... +(-irkK TT V Vj S 
i-1 

(H-5) 

In other words, the weight can be expressed in terms of a rather comp- 

lex function of the sample covariance matrix, M^ given by 

H-l 

1 



wWW^^jpt^Mift^BJW^^ 

K 
1   r   * t (H-6) 

r 

Using the method Oi. Appendix F, the ratio of the signal-to-noise ratio 

due to arbitrary weight, W, to optimum signal-to-noise ratio is 

p,, = S^ wV (A W)"1(St:M"1S*)"1 
w 

(H-7) 

where S is the desired signal vector and M is the true covariance matrix.  The 

straightforward approach is now to substitute Equation H-5 into Equation H-7 

and find the expected value of Pw as a function of K and the order, N. 

This analysis is incomplete as presented because the derivation of 

E(p) is apparently a very complex process.  It is hoped that the analysis can 

be completed in the next phase of the contract. 

. 

'I 

. 
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